Regional Black Carbon Emissions and Global Aerosol-Climate Model Results

Chien Wang

Massachusetts Institute of Technology

The MIT/NCAR Three-Dimensional Interactive Aerosol-Climate Model

References: Wang 2004; Wang et al., 1998; Kiehl et al., 1998; Boville and Gent, 1998; Mayer et al., 2000; Ekman et al., 2004; Wilson et al., 2001.

Modeled Annual Mean
BC Column Loading
(in g/km²)

Aerosol Index:

Derived from the monthly POLDER satellite data Nov. 1996- June 1997 (courtesy of F.-M. Bréon and S. Generoso)

Wang (2004)
Note: Colors are in log-scale

BC Caused "Energy Redistribution"

(Based on the last 20-year means of 2 SOM runs from Wang [2004])

Net Fluxes in W/m²

Atmosphere $Net = 0.00 \text{ W/m}^2$

0.80 0.31 0.54 0.05

Earth's Surface $Net = 0.05 \text{ W/m}^2$

System = TOA Budget Net = 0.05 W/m^2

(+) Atmospheric
Heating (Shortwave)

(-) Upward (+) Downward
Surface Heat Fluxes

(-) Surface Incoming Solar Radiation

BC Caused Changes in Annual and Global Mean Surface Temperature (Wang, 2004)

If adopting the concept of "climate sensitivity", $\lambda = dT/dF$ in K/(W/m²): Wang (2004): $\lambda(BC) = 0.26 \pm 0.20$; Roberts and Jones (2004): $\lambda(4 \text{ x fossil fuel BC}) = 0.56 \pm 0.06 < \lambda(CO_2) = 0.91$; Also see Penner, Zhang, and Chung (2003).

BC Caused Changes in Convective Precipitation Rate (mm/year) (Wang, 2004)

Also see Roberts and Jones (2004); Chung, Ramanathan, and Kiehl (2002); Menon, Hansen, Nazarenko, and Luo (2002).

Some Characters of BC and its Climate Impact

- ➤ Short lifetime (up to ~ 2 weeks; global mean ~ 1 week) => heterogeneous spatial distributions;
- ➤ Modeled climate effects are more significant in regional than global scale (Note: global-wide distributed).

Interesting (academic not geopolitical) Issues

- Are the regional-scale climate effects of BC dominated by the emissions from a specific regions?
- ➤ Or, how sensitive are BC caused global climate changes to the emissions from a specific region?

Modeled Input: BC Annual Emissions (~14 TgC/yr) (ktC/yr at each 1°x1° grid; colors are in log-scale)

Numerical Experiment Design

- 2.8°×2.8° horizontal resolution, 18 vertical layers, slab ocean model (SOM) + land surface model (LSM); conventional "indirect effect" is excluded
- <u>Base Set</u>: 1 run excluding BC interactive radiative forcings but atmospheric evolution
- > REF Set: 1 run driven by emissions from all regions
- Regional Emission Only Set: 5 runs driven by emissions from only one given region
- Revised Emission Set: 5 runs driven by global emissions with modified emission at a given region
- ➤ All runs last 50 years; the last 20-year means are used in analyses; BC effect = Forcing Run BASE

Surfaces of Regions with ≥ 50% BC from East Asia (yellow), South Asia (blue), Europe (green), and North America (brown) Emissions

Mean BC Column Loading: Ratios of Regional Emission Runs to REF Run

BC Caused Changes in Convective Precipitation Rate: Results of Regional Emission Only Runs (mm/year)

Zonal Mean Changes in Convective Precipitation Change Caused by Regional BC Emissions

Indirect Effects of BC: The Importance of Process Study

Results based on 30 3-D cloud-resolving model runs of a tropical Pacific deep convection case (Wang, 2004a&b)

Total Precipitation vs.
Initial CCN Concentration

Maximum Anvil Cloud Coverage vs.
Initial CCN Concentration

← Possible BC Contribution **←**

Summary

- Atmospheric abundance of BC is additively related to the regional emissions (within 5%);
- Emissions from each of the selected major regions can individually (even "remotely") cause a change in tropical convective precipitation (comparable in magnitude but differing in pattern to the case combining all of them);
- Climate effects of BC emissions from selected regions likely compensate each other over certain areas, particularly in the Northern Hemispheric tropics;
- Limiting emissions of BC in any specific region is unlikely to significantly reduce its global-wide climate impacts.
- ➤ Issues for process study: (1) "aged" hygroscopic BC-contained particles and indirect forcing; (2) the role of <u>local</u> thermodynamic effect of absorbing aerosols in the formation of clouds (esp. convective ones) and precipitation.